TLE7273-2

Low Dropout Voltage Regulator

Automotive Power

Never stop thinking

Low Dropout Voltage Regulator

TLE7273-2

1 Overview

Features

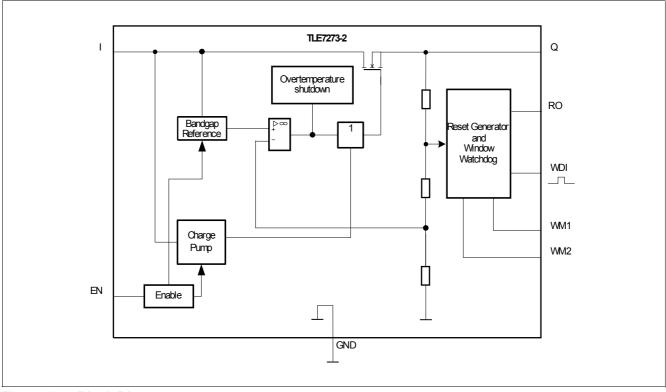
- Output Voltage 5 V, 3.3 V
- Output Voltage Tolerance ±2% Up To 180mA
- Ultra Low Quiescent Current Consumption < 36 μA
- Enable Function
- Very Low Dropout Voltage
- Reset With Adjustable Power-On delay
- Window Watchdog With
 Current Dependent Deactivation
- Output Current Limitation
- Wide Operation Range Up To 45 V
- Wide Temperature Range From -40 °C To 150 °C
- Overtemperature Shutdown
- Green Product (RoHS compliant)
- AEC Qualified

PG-DSO-14

Description

The TLE7273-2 is a monolithic voltage regulator with integrated window watchdog and reset dedicated for microcontroller supplies under harsh automotive environment conditions.

Due to its ultra low quiescent current, the TLE7273-2 is perfectly suited for applications that are permanently connected to battery. In addition, the regulator can be shut down via the Enable input causing the current consumption to drop below 3 μ A. The TLE7273-2 is equipped with an output current limitation and an overtemperature shutdown, protecting the device against overload, short circuit and over-temperature. It operates in the wide junction temperature range from -40 °C to 150 °C.


Туре	Package	Marking		
TLE7273-2GV50	PG-DSO-14	TLE7273-2GV50		
TLE7273-2GV33	PG-DSO-14	TLE7273-2GV33		

TLE7273-2

Block Diagram

2 Block Diagram

Pin Configuration

3 Pin Configuration

3.1 Pin Assignment (PG-DSO-14)

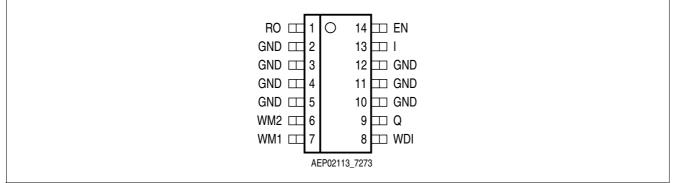


Figure 2 Pin Assignment PG-DSO-14 (top view)

3.2 Pin Definitions and Functions (PG-DSO-14)

Table 1 Pin Definitions and Functions

Pin No.	Symbol	Function
1	RO	Reset Output TLE7273-2GV33: open drain output; TLE7273-2GV50: integrated 20 k Ω pull-up resistor to output Q; leave open if not needed
2-5, 10-12	GND	Ground connect pin 2 and 3 to GND; connect pin 4-5 and 10-12 to heat sink area with GND potential
7	WM1	Watchdog Mode Bit 1 watchdog and reset mode selection, see "Window Watchdog State Diagram, Watchdog and Reset Modes" on Page 8; connect to Q or GND
6	WM2	Watchdog Mode Bit 2 watchdog and reset mode selection, see "Window Watchdog State Diagram, Watchdog and Reset Modes" on Page 8; connect to Q or GND
8	WDI	Watchdog Input trigger input for watchdog pulses; to turn off watchdog connect to GND and connect pin WM1 and WM2 to Q
9	Q	Output Voltage block to GND with a ceramic capacitor close to the IC terminals, respecting the values given for its capacitance and ESR in "Functional Range" on Page 7
13	I	Input Voltage block to ground directly at the IC with a 100 nF ceramic capacitor
14	EN	Enable Input low level disables the IC; integrated pull-down resistor to GND

General Product Characteristics

4 General Product Characteristics

4.1 Absolute Maximum Ratings

Table 2 Absolute Maximum Ratings¹⁾

-40 °C < *T*_i < 150 °C

Pos.	Parameter	Symbol	Limi	t Values	Unit	Remarks
			Min.	Max.		
Input I				L.	1	
4.1.1	Voltage	$V_{\rm I}$	-0.3	45	V	-
Output	t Q, Reset Output RO, Watchdog M	Node 2			-	+
4.1.2	Voltage	V_{Q}	-0.3	5.5	V	permanent
4.1.3	Voltage	VQ	-0.3	6.2	V	$t < 10 \text{ s}^{2)}$
Enable	Input EN		•			
4.1.4	Voltage	$V_{\sf EN}$	-1	45	V	-
4.1.5	Current	$I_{\rm EN}$	-1	1	mA	-
Watch	dog Input WDI					
4.1.6	Voltage	$V_{\sf RO}$	-1	7	V	permanent
Watch	dog Mode 1					+
4.1.7	Voltage	$V_{\rm WM1}$	-0.3	5.5	V	permanent
4.1.8	Voltage	$V_{\rm WM1}$	-0.3	6.2	V	$t < 10 \text{ s}^{2)}$
4.1.9	Current	$I_{\rm WM1}$	-5	5	mA	-
ESD S	usceptibility	<u>.</u>				
4.1.10	Human Body Model (HBM) ³⁾	Voltage	-	3	kV	-
4.1.11	Charged Device Model (CDM) ⁴⁾	Voltage	-	1.5	kV	-
Tempe	ratures				•	
4.1.12	Junction Temperature	$T_{\rm j}$	-40	150	°C	-
4.1.13	Storage Temperature	T _{stg}	-50	150	°C	_

1) not subject to production test, specified by design

2) exposure to these absolute maximum ratings for extended periods (t > 10 s) may affect device reliability

3) ESD HBM Test according JEDEC JESD22-A114

4) ESD CDM Test according AEC/ESDA ESD-STM5.3.1-1999

Note: Maximum ratings are absolute ratings; exceeding any one of these values may cause irreversible damage to the integrated circuit. Integrated protection functions are designed to prevent IC destruction under fault conditions. Fault conditions are considered as outside normal operating range. Protections functions are not designed for continuous repetitive operation.

General Product Characteristics

4.2 Functional Range

Pos.	Parameter	Symbol	Lim	it Values	Unit	Remarks	
			Min.	Max.			
4.2.1	Input Voltage	V ₁	5.5	45	V	TLE7273-2GV50	
4.2.2			4.2	45	V	TLE7273-2GV33	
4.2.3	Output Capacitor's Requirements for	CQ	470	_	nF	_1)	
4.2.4	Stability	$ESR(C_Q)$	_	3	Ω	_2)	

1) the minimum output capacitance requirement is applicable for a worst case capacitance tolerance of 30%

2) relevant ESR value at f = 10 kHz

Note: Within the functional range the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the related electrical characteristics table.

4.3 Thermal Resistances

Pos.	Parameter	Symbol		Limit Val	ues	Unit	Remarks
			Min.	Тур.	Max.		
Packa	ige PG-DSO-14	-1	1	H	I		1
4.3.1	Junction to Soldering Point ¹⁾	R _{thJSP}	_	30	-	K/W	measured to group of pins 3, 4, 5, 10, 11, 12
4.3.2	Junction to Ambient ¹⁾	R _{thJA}	_	53	_	K/W	2)
4.3.3	_		_	105	_	K/W	footprint only ³⁾
4.3.4			_	74	-	K/W	300 mm^2 heatsink area on PCB ³⁾
4.3.5			-	65	-	K/W	600 mm^2 heatsink area on $PCB^{3)}$

1) not subject to production test, specified by design

 Specified R_{thJA} value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The Product (Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm³ board with 2 inner copper layers (2 x 70µm Cu, 2 x 35µm Cu). Where applicable a thermal via array under the exposed pad contacted the first inner copper layer.

3) Specified R_{thJA} value is according to JEDEC JESD 51-3 at natural convection on FR4 1s0p board; The Product (Chip+Package) was simulated on a 76.2 × 114.3 × 1.5 mm³ board with 1 copper layer (1 x 70µm Cu).

Block Description and Electrical Characteristics

5 Block Description and Electrical Characteristics

5.1 Description

5.1.1 Power On Reset and Reset Output

For an output voltage level of $V_Q \ge 1$ V, the reset output is held low. When the level of V_Q reaches the reset threshold V_{RT} , the signal at RO remains low for the power-up reset delay time t_{RD} . The reset function and timing is illustrated in Figure 3. The reset reaction time t_{RR} avoids wrong triggering caused by short "glitches" on the V_Q -line. In case of V_Q power down ($V_Q < V_{RT}$ for $t > t_{RR}$) a logic low signal is generated at the pin RO to reset an external microcontroller.

The TLE7273-2GV50 features an integrated pull-up resistor on the reset output while the TLE7273-2GV33 have an open drain output requiring an external pull-up resistor. When connected to a voltage level of 5 V, a recommended value for this external resistor is \geq 5.6 k Ω .

But it's also possible calculating its value by using the following formula, based on the reset sink current (Example: external pull-up resistor connected to V_{ext} = 5 V):

 $R_{\text{extmin}} = \Delta V / I_{\text{RO}} = (V_{\text{ext}} - V_{\text{ROmin}}) / I_{\text{RO}} = (5 \text{ V} - 0.25 \text{ V}) / 1.0 \text{ mA} = 4.75 \text{ k}\Omega$

At low output voltage levels V_Q < 1 V the integrated pull-up resistor of the TLE7273-2GV50 is switched off setting the reset output high ohmic.

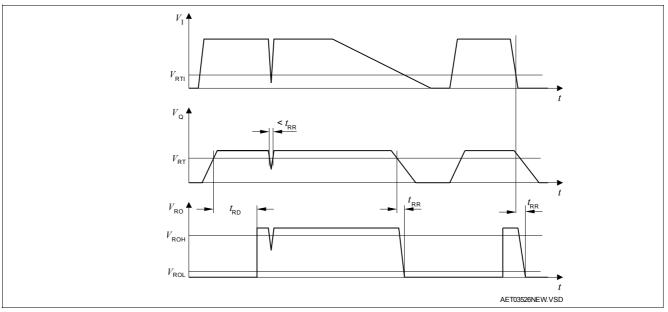


Figure 3 Reset Function and Timing Diagram

5.1.2 Watchdog Operation

The watchdog uses a fraction of the charge pump oscillator's clock signal as timebase. The watchdog timebase can be adjusted using the pins WM1 and WM2 (see Figure 4). The watchdog can be turned off setting WM1 and WM2 to high level. The timing values refer to typ. values with WM1 and WM2 connected to GND (fast watchdog and reset timing).

Figure 4 shows the state diagram of the window watchdog (WWD) and the watchdog and reset mode selection. After power-on, the reset output signal at the RO pin (microcontroller reset) is kept LOW for the reset delay time t_{RD} of typ. 16 ms. With the LOW to HIGH transition of the signal at RO the device starts the ignore window time t_{CW} (32 ms). During this window the signal at the WDI pin is ignored. Next the WWD starts the open window which

Block Description and Electrical Characteristics

is in the very first turn after power up a long open window with tmax = 4 * t_{OW} . In the following turns, the timing corresponds to the standard timing setting as described in the specification.

When a valid trigger signal is detected during the open window a closed window is initialized immediately. A trigger signal within the closed window is interpreted as a pretrigger failure and results in a reset. After the closed window the open window with the duration t_{OW} is started again. The open window lasts at minimum until the trigger process has occurred, at maximum t_{OW} is 32 ms (typ. value with fast timing).

A HIGH to LOW transition of the watchdog trigger signal at pin WDI is considered as a valid trigger pulse.

See **Figure 6**: To avoid wrong triggering due to parasitic glitches two HIGH samples followed by two LOW samples (sample period t_{sam} typ. 0.5 ms) are decoded as a valid trigger .

A reset is generated (RO goes LOW) if there is no trigger pulse during the open window or if a pretrigger occurs during the closed window. The triggering is correct also, if the first three samples (two HIGH one LOW) of the trigger pulse at pin WDI are inside the closed window and only the fourth sample (the second LOW sample) is taken in the open window.

After turning OFF the Watchdog by output current reduction, RO remains high. (see also the signal diagram in **Figure 5**). After turning ON the WWD again by exceeding the current threshold, the logic cycle starts again with the Ignore Window and goes then into the "1st. long open window". This 1st long OW is maximum 4 * t_{OW} long and allows the re-synchronisation between the micro controller and the WWD timing. The 1st. long OW is closed by the first valid trigger on WDI from the micro controller. This trigger ensures the synchronisation. As soon as this trigger is done, the micro controller timing must be stable and correspondent to t_{WD} .

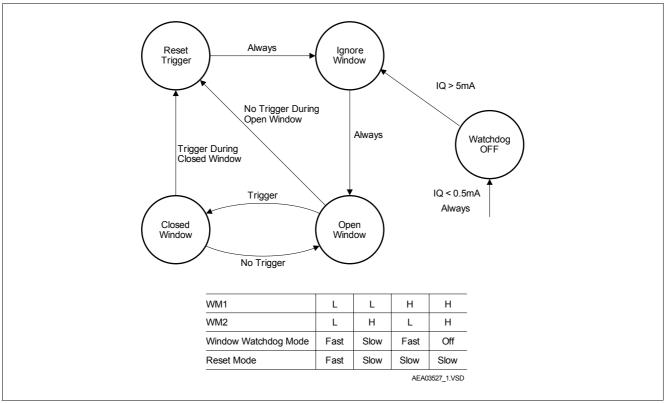


Figure 4 Window Watchdog State Diagram, Watchdog and Reset Modes

TLE7273-2

Block Description and Electrical Characteristics

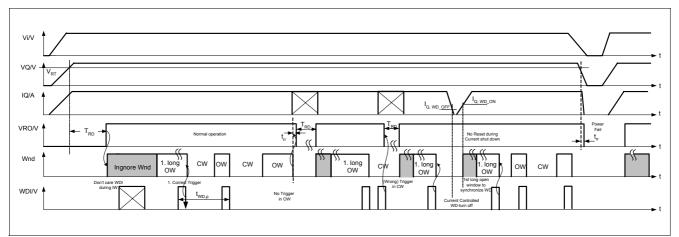


Figure 5 Window Watchdog Signal Diagram

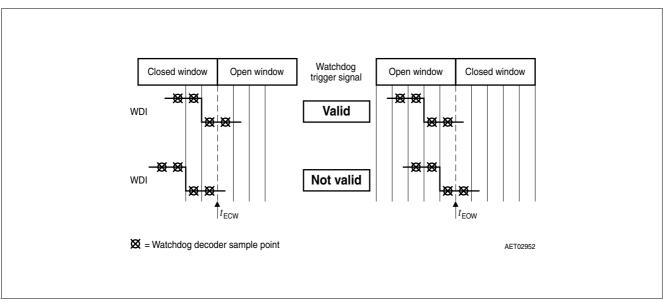


Figure 6 Window Watchdog Definitions

Block Description and Electrical Characteristics

5.2 Electrical Characteristics

Electrical Characteristics

V_1 =13.5 V; – 40 °C < T_1 < 150 °C; unless otherwise specified

Pos.	Parameter	Symbol	Limit	Values	;	Unit	Test Condition
			Min.	Тур.	Max.	1	
Output	t Q				1	1	
5.2.1	Output Voltage	V _Q	4.90	5.00	5.10	V	TLE7273-2GV50 1 mA < <i>I</i> _Q < 180 mA 6 V < <i>V</i> ₁ < 16 V
5.2.2	Output Voltage	V _Q	4.90	5.00	5.10	V	TLE7273-2GV50 I_{Q} = 10 mA 6 V < V_{1} < 45 V
5.2.3	Output Voltage	V _Q	3.234	3.30	3.366	V	TLE7273-2GV33 1 mA < I _Q < 180 mA 4.5 V < V ₁ < 16 V
5.2.4	Output Voltage	V _Q	3.234	3.30	3.366	V	TLE7273-2GV33 $I_{\rm Q}$ = 10 mA 4.5 V < $V_{\rm I}$ < 45 V
5.2.5	Output Current Limitation	I_{Q}	200	_	500	mA	$V_{\rm Q}$ = 2.0 V
5.2.6			200	_	600		$V_{\rm Q}$ = 0 V
5.2.7	Dropout Voltage ¹⁾ $V_{DR} = V_{I} - V_{Q}$	V_{DR}	-	250	500	mV	I _Q = 180 mA
5.2.8	Load Regulation	$\Delta V_{\rm Q,Lo}$	-	50	90	mV	1 mA < I _q < 180 mA;
5.2.9	Line Regulation	$\Delta V_{Q,Li}$	-	10	50	mV	$I_{\rm Q}$ = 1 mA; 10 V < $V_{\rm I}$ < 32 V
5.2.10	Power Supply Ripple Rejection	PSRR	-	60	-	dB	$f_{\rm r}$ = 100 Hz; $V_{\rm r}$ = 0.5 $V_{\rm PP}$
5.2.11	Reverse Output Current Clamping	V _Q	-	-	5.5	V	$I_{\rm Q}$ = -1 mA, $V_{\rm EN}$ = 0 V
Curren	t Consumption				1	1	
5.2.12	Quiescent Current $I_q = I_1 - I_q$	I _q	-	28	36	μA	I _Q = 100 μA; T _i < 80°C
5.2.13	Quiescent Current Disabled	Iq	-	1	3	μA	$V_{\rm EN}$ = 0V; $T_{\rm i}$ < 80°C
Enable	Input EN				1	1	
5.2.14	High Level Input Voltage	$V_{\rm EN,H}$	3.0	-	-	V	V _Q on
5.2.15	Low Level Input Voltage	V _{EN,L}	-	-	0.5	V	$V_{\rm Q} = 0.02 \text{ V};$ $I_{\rm Q} = 5 \text{ mA};$ $T_{\rm j} < 125 \text{ °C}$
5.2.16			-	-	0.3	V	$V_{\rm Q} = 0.02 \text{ V};$ $I_{\rm Q} = 5 \text{ mA}$
5.2.17	High Level Input Current	$I_{\rm EN,H}$	-	3	4	μA	V _{EN} = 5 V
Watch	dog Mode Bit 1	- .	·		·	·	
5.2.18	High Level Input Voltage	V _{WM1,H}	4.00	-	-	V	TLE7273-2GV50
5.2.19			2.65	_	_	V	TLE7273-2GV33

Block Description and Electrical Characteristics

Electrical Characteristics

 V_1 =13.5 V; – 40 °C < T_1 < 150 °C; unless otherwise specified

Pos. Parameter	Parameter	Symbol	Limit	Values	5	Unit	Test Condition
			Min.	Тур.	Max.		
5.2.20	Low Level Input Voltage	$V_{\rm WM1,L}$	-	-	0.80	V	
Watch	dog Mode Bit 2	L.					
5.2.21	High Level Input Voltage	V _{WM2,H}	4.00	-	-	V	TLE7273-2GV50
5.2.22			2.65	-	-	V	TLE7273-2GV33
5.2.23	Low Level Input Voltage	V _{WM2.L}	_	_	0.80	V	

Watchdog Input WDI

vvalunu	iog input wor						
5.2.24	High Level Input Voltage	$V_{\rm WDI,H}$	4.00	-	-	V	TLE7273-2GV50
5.2.25			2.65	-	-	V	TLE7273-2GV33
5.2.26	Low Level Input Voltage	$V_{\rm WDI,L}$	-	-	0.80	V	
5.2.27	High Level Input Current	I _{WDI,H}	_	3	4	μA	$V_{\rm WDI}$ = 5 V
5.2.28	Low Level Input Current	I _{WD,IL}	-	0.5	1	μA	$V_{\rm WDI}$ = 0 V $T_{\rm j}$ < 80 °C
5.2.29	Watchdog Sampling Time	t _{sam}	0.40	0.50	0.60	ms	Fast Watchdog Timing
5.2.30			0.80	1.00	1.20	ms	Slow Watchdog Timing
5.2.31	Ignore Window Time	t _{IW}	25.6	32.0	38.4	ms	Fast Watchdog Timing
5.2.32			51.2	64.0	76.8	ms	Slow Watchdog Timing
5.2.33	Open Window Time	t _{OW}	25.6	32.0	38.4	ms	Fast Watchdog Timing
5.2.34			51.2	64.0	76.8	ms	Slow Watchdog Timing
5.2.35	Closed Window Time	t _{CW}	25.6	32.0	38.4	ms	Fast Watchdog Timing
5.2.36			51.2	64.0	76.8	ms	Slow Watchdog Timing
5.2.37	Window Watchdog Trigger Time ²⁾	t _{WD}	_	48	-	ms	Fast Watchdog Timing
5.2.38			-	96	-	ms	Slow Watchdog Timing
5.2.39	Watchdog Deactivation Current Threshold	I _{Q,WD_off}	0.50	-	-	mA	I_{Q} decreasing $V_{1} > 5.5V$ for TLE7273-2GV50 $V_{1} > 4.2V$ for TLE7273- 2GV33
5.2.40	Watchdog Activating Current Threshold	I _{Q,WD_on}	-	_	5	mA	$I_{\rm Q}$ increasing $V_{\rm I}$ > 5.5V for TLE7273-2GV50 $V_{\rm I}$ > 4.2V for TLE7273- 2GV33
Reset C	Dutput RO						
5.2.41	Output Undervoltage Reset Switching Threshold	V _{RT}	4.50	4.60	4.70	V	TLE7273-2GV50 $V_{\rm Q}$ decreasing
5.2.42			3.00	3.07	3.13	V	TLE7273-2GV33 ³⁾ $V_1 > 4.2V;$ V_Q decreasing

TLE7273-2

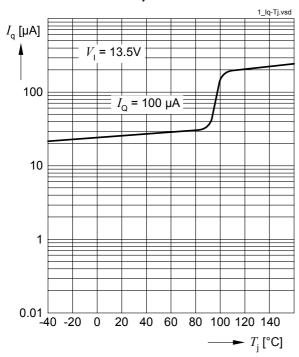
Block Description and Electrical Characteristics

Electrical Characteristics

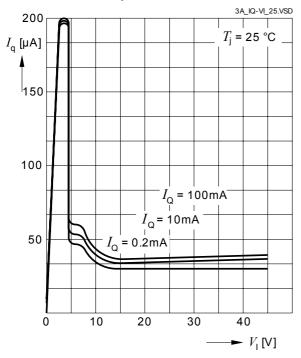
 V_1 =13.5 V; – 40 °C < T_j < 150 °C; unless otherwise specified

Pos.	Parameter	Symbol	Limit Values			Unit	Test Condition	
			Min.	Тур.	Max.	-		
5.2.43	Input Undervoltage Reset Switching	V _{RTI}	_	3.9	4.0	V	TLE7273-2GV33 ³⁾	
5.2.44	Threshold						$V_{\rm Q}$ > $V_{\rm RT}$;	
5.2.45	-						$V_{\rm I}$ decreasing	
5.2.46	Output Undervoltage Reset	V_{RH}	-	60	-	mV	TLE7273-2GV33	
5.2.47	Hysteresis		-	90	-	mV	TLE7273-2GV50	
5.2.48	Maximum Reset Sink Current	I _{RO,max}	1.75	-	-	mA	TLE7273-2GV50 $V_{\rm Q}$ = 4.5 V; $V_{\rm RO}$ =0.25 V	
5.2.49			1.3	-	-	mA	TLE7273-2GV33 $V_{\rm Q}$ = 3.0 V; $V_{\rm RO}$ = 0.25 V	
5.2.50	Reset Output Low Level Voltage	V _{ROL}	-	0.15	0.25	V	V _Q ≥1 V; I _{RO} < 200 μA	
5.2.51	Reset Output High Level Voltage	V _{ROH}	4.5	-	-	V	TLE7273-2GV50	
5.2.52	Reset High Level Leakage Current	I _{ROLK}	-	-	1	μA	TLE7273-2GV33	
5.2.53	Integrated Reset Pull Up Resistor	R _{RO}	10	20	40	kΩ	TLE7273-2GV50 internally connected to <i>V</i>	
5.2.54	Power-On Reset Delay Time	t _{RD}	12.8	16.0	19.2	ms	Fast Reset Timing	
5.2.55			25.6	32.0	38.4	ms	Slow Reset Timing	
5.2.56	Reset Reaction Time	t _{RR}	-	4	12	μs		

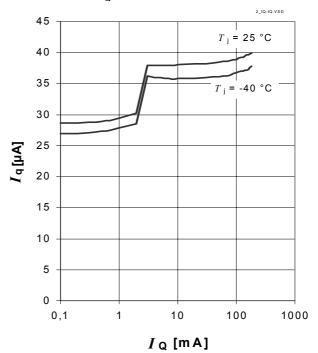
1) measured when the output voltage has dropped 100 mV from the nominal value obtained at V_1 = 13.5 V

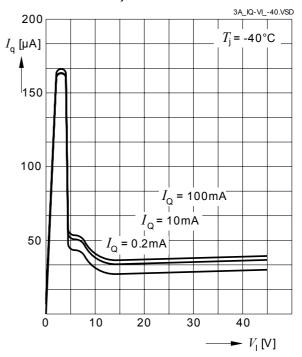

2) recommendation for typical trigger time; $t_{WD} = t_{CW} + 1/2^* t_{OW}$

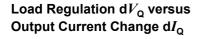
3) reset output triggered when output voltage $V_{\rm Q}$ is lower than output voltage reset switching threshold $V_{\rm RT}$ or is also triggered, when input voltage is decreasing to $V_{\rm I}$ < 4.0 V and $V_{\rm Q}$ > $V_{\rm RT}$

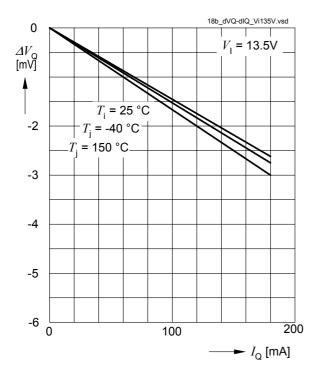


Typical Performance Characteristics

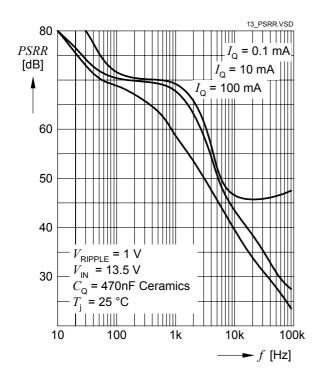

Current Consumption $I_{\rm q}$ versus Junction Temperature $T_{\rm j}$ (EN=ON)

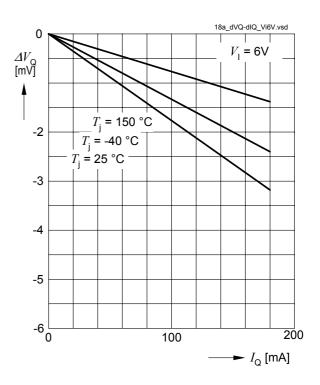

Current Consumption I_q versus Input Voltage V_1 at $T_i=25^{\circ}C$ (EN=ON)

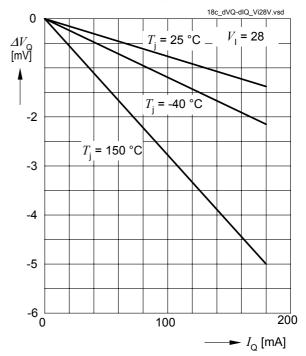

Current Consumption I_q versus Output Current I_Q (EN=ON)



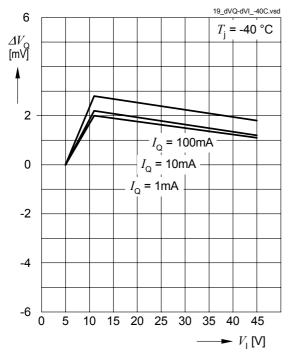
Current Consumption I_q versus Input Voltage V_1 at T_1 =-40°C (EN=ON)



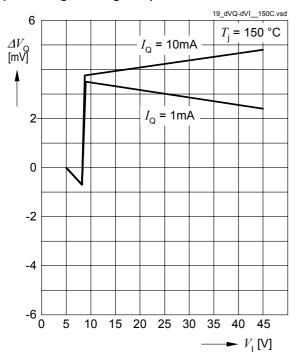


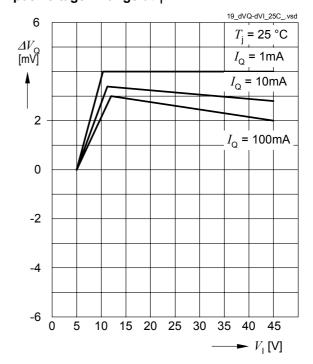

Power Supply Ripple Rejection PSRR

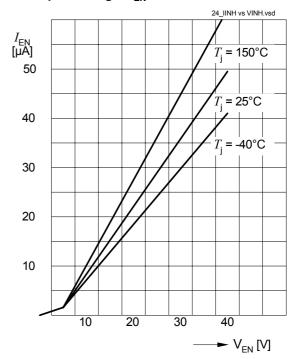
Load Regulation dV_q versus Output Current Change dI_q

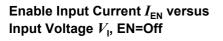


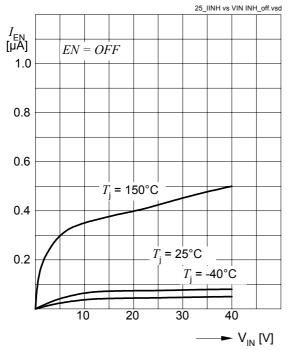
Load Regulation dV_{Q} versus Output Current Change dI_{Q}



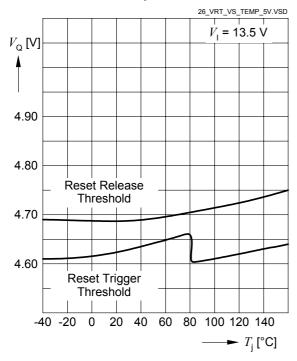

Line Regulation $\mathrm{d}V_{\mathrm{Q}}$ versus Input Voltage Change $\mathrm{d}V_{\mathrm{I}}$

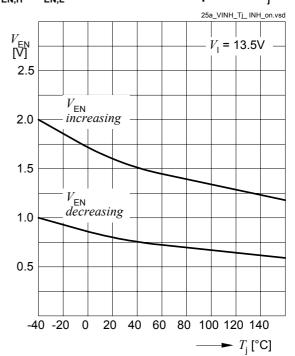

Line Regulation dV_Q versus Input Voltage Change dV_I

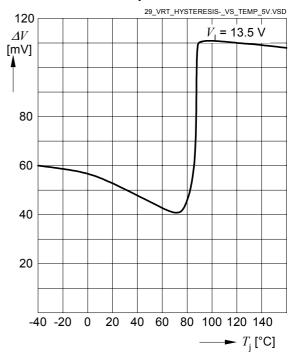

Line Regulation dV_{Q} versus Input Voltage Change dV_{I}

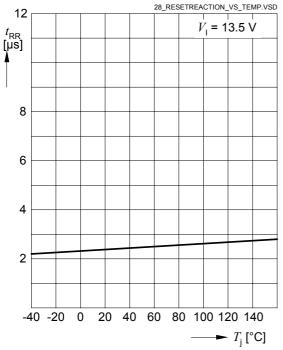


Enable Input Current $I_{\rm EN}$ versus Enable Input Voltage $V_{\rm EN}$

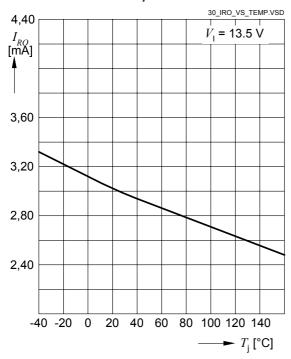


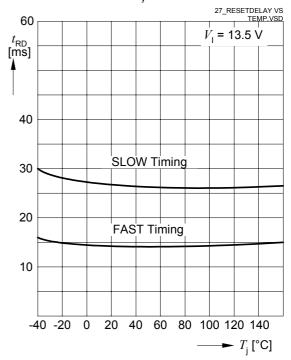


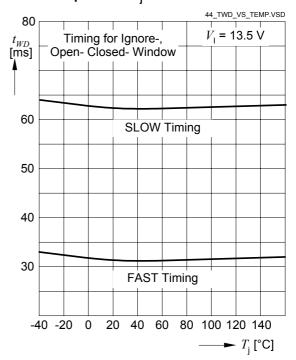

Reset Threshold $V_{\rm RT}$ versus Junction Temperature $T_{\rm i}$ (5V-Version)

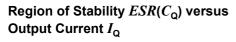


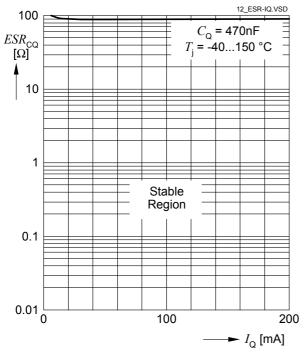
Reset Hysteresis versus Junction Temperature T_i (5V-Version)



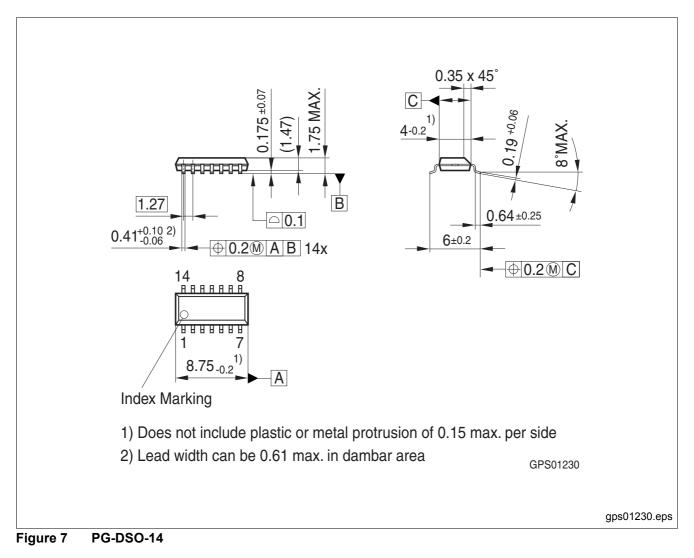



Reset Output Sink Current $I_{\rm RO}$ versus Junction Temperature $T_{\rm i}$





Watchdog Timing t_{WD} versus Junction Temperature T_i



Package Outlines

6 Package Outlines

Green Product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

7 Revision History

Revision	Date	Changes
1.1	2008-07-25	3.3V version and all related description added:
		In "Features" on Page 2 "3.3V" added
		In "Overview" on Page 2 in table at the bottom type "TLE7273-2GV33" added
		In "Pin Definitions and Functions (PG-DSO-14)" on Page 4 in description for Pin 1 "TLE7273-2GV33: open drain output;" added
		In "Functional Range" on Page 6 Item 4.2.2 added
		In "Power On Reset and Reset Output" on Page 7 description for dimensioning external pull-up resistor at RO added;
		In "Electrical Characteristics" on Page 10 all specific Items for 3.3V version added: Item 5.2.3, Item 5.2.4, Item 5.2.19, Item 5.2.22, Item 5.2.25, Item 5.2.42, Item 5.2.43, Item 5.2.44, Item 5.2.45, Item 5.2.46, Item 5.2.49 and Item 5.2.52 added; In Item 5.2.39 and Item 5.2.40 Conditions for 3.3V version added;
1.0	2008-04-10	final version data sheet

Edition 2008-07-25

Published by Infineon Technologies AG 81726 Munich, Germany © 2008 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.